Harmonic Oscillator
The references that inspired this chapter are all mentioned in the
References
section.
\[% https://latex.wikia.org/wiki/List_of_LaTeX_symbols
% https://www.overleaf.com/learn/latex/Main_Page
%
% latex commands for quantum mechanics: bra & kets
\newcommand{\bra}[1]{\left<#1\right|}
\newcommand{\ket}[1]{\left|#1\right>}
\newcommand{\bk}[2]{\left<#1\middle|#2\right>}
\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}
%
% general shortcuts
\newcommand{\bm}[1]{\boldsymbol{#1}} % bold math
\newcommand{\super}[2]{#1 {}^{#2}} % superscript
\newcommand{\half}{\frac{1}{2}}
%
% hats together with subscripts or superscript (e.g. for angular momentum)
\newcommand{\hatb}[1]{\bm{\hat{#1}}} % hat + bold
\newcommand{\hatsub}[2]{\hat{{#1}_{#2}}} % hat + subscript
\newcommand{\hatsup}[2]{\super{\hat{#1}}{#2}} % hat + superscript
\newcommand{\hatsubsup}[3]{\super{\hat{#1}}{#3}_{#2}} % hat + sub + superscript
%
% Pauli operators
\newcommand{\pauliX}{\hatsubsup{\sigma}{X}{}}
\newcommand{\pauliY}{\hatsubsup{\sigma}{Y}{}}
\newcommand{\pauliZ}{\hatsubsup{\sigma}{Z}{}}
\newcommand{\pauliP}{\hatsubsup{\sigma}{+}{}}
\newcommand{\pauliM}{\hatsubsup{\sigma}{-}{}}
\newcommand{\pauliPM}{\hatsubsup{\sigma}{\pm}{}}
%
% derivates
\newcommand{\odv}[2]{\frac{\textrm{d} #1}{\textrm{d} #2}}
\newcommand{\pdv}[2]{\frac{\partial #1}{\partial #2}}\]
The harmonic oscillator is classically defined as follows [B1]:
A harmonic oscillator is a system consisting of a particle of mass \(m\) elastically
bound to a center \(x_0\), with a restoring force \(F = - K (x - x_0)\) proportional to
the distance from the center. The coefficient \(K\) is the spring constant of the
oscillator, and the potential energy reads \(V(x) = V_0 + K (x - x_0)^2 / 2\).
The total energy (kinetic + potential) of the classical particle is then
\[E = \half m \dot{x}^2 + \half m \omega^2 x^2\]
According to the correspondence principle
the quantum formulation of the harmonic oscillator has the form:
\[\hat{H} = \frac{ \hatsubsup{p}{x}{2} }{2m} + \half m \omega^2 \hatsup{x}{2}\]
Analytic solution
The problem is to solve the eigenvalue equation
\[\left( - \frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \half m \omega^2 x^2 \right) \psi(x)
= E \, \psi(x)\]
By introducing dimensionless quantities, an analytic solution involving Hermite functions
can be derived, with the quantized energies
\[E_n = \left( n + \half \right) \hbar \omega\]
Algebraic solution
An alternative solution due to Dirac can be obtained by introducing the observables
\[\hat{X} = \hat{x} \sqrt{ \frac{m \omega}{\hbar} } , \quad
\hat{P} = \frac{\hat{p}}{ \sqrt{ m \hbar \omega } }\]
and further the annihilation, creation operators
\[\begin{split}\hat{a} = \frac{1}{\sqrt{2}} \left( \hat{X} + i \hat{P} \right), \quad
\hatsup{a}{\dagger} = \frac{1}{\sqrt{2}} \left( \hat{X} - i \hat{P} \right) \\\end{split}\]
and the number operator
\[\hat{N} = \hatsup{a}{\dagger} \hat{a}\]
By simple considerations about these operators and their commutation relations,
it can be shown that
The eigenvalues of \(\hat{N}\) are the nonnegative integers only.
Recursive relations about the creation and annihilation operators such as
\[\hat{a} \ket{n} = \sqrt{n} \ket{n - 1}, \quad
\hatsup{a}{\dagger} \ket{n} = \sqrt{n + 1} \ket{n + 1}\]
allow to reconstruct the eigenfunctions of the Hamiltonian.
These operators transform a state of energy \((n + 1/2) \hbar \omega\) into
a state \((n + 1/2 \mp 1) \hbar \omega\), hence their names.
References
“The One Dimensional Harmonic Oscillator”, section 4.2, and
“Algebraic Solution”, section 7.5
[B1]