Harmonic Oscillator

The references that inspired this chapter are all mentioned in the References section.

\[% https://latex.wikia.org/wiki/List_of_LaTeX_symbols % https://www.overleaf.com/learn/latex/Main_Page % % latex commands for quantum mechanics: bra & kets \newcommand{\bra}[1]{\left<#1\right|} \newcommand{\ket}[1]{\left|#1\right>} \newcommand{\bk}[2]{\left<#1\middle|#2\right>} \newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>} % % general shortcuts \newcommand{\bm}[1]{\boldsymbol{#1}} % bold math \newcommand{\super}[2]{#1 {}^{#2}} % superscript \newcommand{\half}{\frac{1}{2}} % % hats together with subscripts or superscript (e.g. for angular momentum) \newcommand{\hatb}[1]{\bm{\hat{#1}}} % hat + bold \newcommand{\hatsub}[2]{\hat{{#1}_{#2}}} % hat + subscript \newcommand{\hatsup}[2]{\super{\hat{#1}}{#2}} % hat + superscript \newcommand{\hatsubsup}[3]{\super{\hat{#1}}{#3}_{#2}} % hat + sub + superscript % % Pauli operators \newcommand{\pauliX}{\hatsubsup{\sigma}{X}{}} \newcommand{\pauliY}{\hatsubsup{\sigma}{Y}{}} \newcommand{\pauliZ}{\hatsubsup{\sigma}{Z}{}} \newcommand{\pauliP}{\hatsubsup{\sigma}{+}{}} \newcommand{\pauliM}{\hatsubsup{\sigma}{-}{}} \newcommand{\pauliPM}{\hatsubsup{\sigma}{\pm}{}} % % derivates \newcommand{\odv}[2]{\frac{\textrm{d} #1}{\textrm{d} #2}} \newcommand{\pdv}[2]{\frac{\partial #1}{\partial #2}}\]

The harmonic oscillator is classically defined as follows [B1]:

A harmonic oscillator is a system consisting of a particle of mass \(m\) elastically bound to a center \(x_0\), with a restoring force \(F = - K (x - x_0)\) proportional to the distance from the center. The coefficient \(K\) is the spring constant of the oscillator, and the potential energy reads \(V(x) = V_0 + K (x - x_0)^2 / 2\).

The total energy (kinetic + potential) of the classical particle is then

\[E = \half m \dot{x}^2 + \half m \omega^2 x^2\]

According to the correspondence principle the quantum formulation of the harmonic oscillator has the form:

\[\hat{H} = \frac{ \hatsubsup{p}{x}{2} }{2m} + \half m \omega^2 \hatsup{x}{2}\]

Analytic solution

The problem is to solve the eigenvalue equation

\[\left( - \frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \half m \omega^2 x^2 \right) \psi(x) = E \, \psi(x)\]

By introducing dimensionless quantities, an analytic solution involving Hermite functions can be derived, with the quantized energies

\[E_n = \left( n + \half \right) \hbar \omega\]

Algebraic solution

An alternative solution due to Dirac can be obtained by introducing the observables

\[\hat{X} = \hat{x} \sqrt{ \frac{m \omega}{\hbar} } , \quad \hat{P} = \frac{\hat{p}}{ \sqrt{ m \hbar \omega } }\]

and further the annihilation, creation operators

\[\begin{split}\hat{a} = \frac{1}{\sqrt{2}} \left( \hat{X} + i \hat{P} \right), \quad \hatsup{a}{\dagger} = \frac{1}{\sqrt{2}} \left( \hat{X} - i \hat{P} \right) \\\end{split}\]

and the number operator

\[\hat{N} = \hatsup{a}{\dagger} \hat{a}\]

By simple considerations about these operators and their commutation relations, it can be shown that

The eigenvalues of \(\hat{N}\) are the nonnegative integers only.

Recursive relations about the creation and annihilation operators such as

\[\hat{a} \ket{n} = \sqrt{n} \ket{n - 1}, \quad \hatsup{a}{\dagger} \ket{n} = \sqrt{n + 1} \ket{n + 1}\]

allow to reconstruct the eigenfunctions of the Hamiltonian. These operators transform a state of energy \((n + 1/2) \hbar \omega\) into a state \((n + 1/2 \mp 1) \hbar \omega\), hence their names.

References

  • “The One Dimensional Harmonic Oscillator”, section 4.2, and
    “Algebraic Solution”, section 7.5 [B1]