Rotating Wave Approximation¶
\[% https://latex.wikia.org/wiki/List_of_LaTeX_symbols
% https://www.overleaf.com/learn/latex/Main_Page
%
% latex commands for quantum mechanics: bra & kets
\newcommand{\bra}[1]{\left<#1\right|}
\newcommand{\ket}[1]{\left|#1\right>}
\newcommand{\bk}[2]{\left<#1\middle|#2\right>}
\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}
%
% general shortcuts
\newcommand{\bm}[1]{\boldsymbol{#1}} % bold math
\newcommand{\super}[2]{#1 {}^{#2}} % superscript
\newcommand{\half}{\frac{1}{2}}
%
% hats together with subscripts or superscript (e.g. for angular momentum)
\newcommand{\hatb}[1]{\bm{\hat{#1}}} % hat + bold
\newcommand{\hatsub}[2]{\hat{{#1}_{#2}}} % hat + subscript
\newcommand{\hatsup}[2]{\super{\hat{#1}}{#2}} % hat + superscript
\newcommand{\hatsubsup}[3]{\super{\hat{#1}}{#3}_{#2}} % hat + sub + superscript
%
% Pauli operators
\newcommand{\pauliX}{\hatsubsup{\sigma}{X}{}}
\newcommand{\pauliY}{\hatsubsup{\sigma}{Y}{}}
\newcommand{\pauliZ}{\hatsubsup{\sigma}{Z}{}}
\newcommand{\pauliP}{\hatsubsup{\sigma}{+}{}}
\newcommand{\pauliM}{\hatsubsup{\sigma}{-}{}}
\newcommand{\pauliPM}{\hatsubsup{\sigma}{\pm}{}}
%
% derivates
\newcommand{\odv}[2]{\frac{\textrm{d} #1}{\textrm{d} #2}}
\newcommand{\pdv}[2]{\frac{\partial #1}{\partial #2}}\]
Draft Summary
Change to the rotating reference frame, equivalent to neglecting terms of higher frequency, that average out, see [B2] p. 146 and p. 152 (Jaynes-Cumming).
- from p.165 [T5]:“It is shown in Chapters 8 and 9 that the non-energy-conserving terms in \(\hatsubsup{H}{ED}{}\) make important contributions to higher-order radiative processes, where energy is conserved in the final state but not in some of the intermediate states. “