Bibliography

Books

B1

Jean-Louis Basdevant and Jean Dalibard. Quantum Mechanics -. Springer Science & Business Media, Berlin Heidelberg, edition, 2005. ISBN 978-3-540-27706-4.

B2

Serge Haroche and Jean-Michel Raimond. Exploring the Quantum - Atoms, Cavities, and Photons. OUP Oxford, New York, London, edition, 2013. ISBN 978-0-199-68031-3.

B3

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information - 10th Anniversary Edition. Cambridge University Press, Cambridge, edition, 2010. ISBN 978-1-107-00217-3.

Lectures

L1

Monika Aidelsburger. Quantum Hardware. Lectures in Quantum Science and Technology at Ludwig Maximilian University, W 2020/2021. URL: https://www.ph.tum.de/academics/org/cc/mh/PH1009/.

L2

Ignacio Cirac. Quantum Information. Lectures in Quantum Science and Technology at Technical University of Munich, W 2020/2021. URL: https://www.ph.tum.de/academics/org/cc/mh/PH1010/.

L3

John Michael Kosterlitz. Topological Defects and Phase Transitions. Nobel Lecture, 2016. URL: https://www.nobelprize.org/uploads/2018/06/kosterlitz-lecture.pdf.

L4

John Preskill. Quantum Computation. Online lectures notes, 2021. URL: http://theory.caltech.edu/~preskill/ph229/.

Review Papers

R1

Tameem Albash and Daniel A. Lidar. Adiabatic quantum computation. Reviews of Modern Physics, Jan 2018. arXiv:1611.04471, doi:10.1103/revmodphys.90.015002.

R2

Ehud Altman, Kenneth R. Brown, Giuseppe Carleo, and others. Quantum simulators: architectures and opportunities. PRX Quantum, February 2021. URL: https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.017003, arXiv:1912.06938, doi:10.1103/prxquantum.2.017003.

R3

R. Blatt and C. F. Roos. Quantum simulations with trapped ions. Nature Physics, 8(4):277–284, April 2012. URL: https://www.researchgate.net/publication/258686738_Quantum_Simulations_with_Trapped_Ions, doi:10.1038/nphys2252.

R4

I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics with ultracold gases. Reviews of Modern Physics, 80(3):885–964, Jul 2008. arXiv:0704.3011, doi:10.1103/revmodphys.80.885.

R5

Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbène. Quantum simulations with ultracold quantum gases. Nature Physics, 8(4):267–276, April 2012. URL: https://www.researchgate.net/publication/232773948_Quantum_Simulations_with_Ultracold_Quantum_Gases, doi:10.1038/nphys2259.

R6

Antoine Browaeys and Thierry Lahaye. Many-body physics with individually controlled rydberg atoms. Nature Physics, 16(2):132–142, Jan 2020. arXiv:2002.07413, doi:10.1038/s41567-019-0733-z.

R7

M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and et al. Variational quantum algorithms. Nature Reviews Physics, Aug 2021. arXiv:2012.09265, doi:10.1038/s42254-021-00348-9.

R8

I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys., 86:153–185, Mar 2014. URL: https://www.researchgate.net/publication/256187028_Quantum_Simulation, arXiv:1308.6253, doi:10.1103/RevModPhys.86.153.

R9

Ivan Kassal, James D. Whitfield, Alejandro Perdomo-Ortiz, Man-Hong Yung, and Alán Aspuru-Guzik. Simulating chemistry using quantum computers. Annual Review of Physical Chemistry, 62(1):185–207, May 2011. arXiv:1007.2648, doi:10.1146/annurev-physchem-032210-103512.

R10

M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver. Superconducting qubits: current state of play. Annual Review of Condensed Matter Physics, 11(1):369–395, Mar 2020. doi:10.1146/annurev-conmatphys-031119-050605.

R11

P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews, 6(2):021318, Jun 2019. URL: https://www.researchgate.net/publication/333832447_A_quantum_engineer%27s_guide_to_superconducting_qubits, arXiv:1904.06560, doi:10.1063/1.5089550.

R12

Maciej Lewenstein, Anna Sanpera, Veronica Ahufinger, Bogdan Damski, Aditi Sen(De), and Ujjwal Sen. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Advances in Physics, 56(2):243–379, Mar 2007. arXiv:cond-mat/0606771, doi:10.1080/00018730701223200.

R13

Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan. Quantum computational chemistry. Reviews of Modern Physics, Mar 2020. arXiv:1808.10402, doi:10.1103/revmodphys.92.015003.

R14

Ketterle W., Durfee D.S., and Stamper-Kurn D.M. Making, probing and understanding bose-einstein condensates. Proceedings of the International School of Physics Enrico Fermi., 140(Bose-Einstein Condensation in Atomic Gases):67–176, 1999. arXiv:cond-mat/9904034, doi:10.3254/978-1-61499-225-7-67.

Articles

1

Daniel S. Abrams and Seth Lloyd. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Physical Review Letters, 83(24):5162–5165, Dec 1999. URL: http://dx.doi.org/10.1103/PhysRevLett.83.5162, arXiv:quant-ph/9807070, doi:10.1103/physrevlett.83.5162.

2

Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. Nature, 614(7949):676–681, February 2023. arXiv:2207.06431, doi:10.1038/s41586-022-05434-1.

3

Tameem Albash and Daniel A. Lidar. Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Physical Review X, jul 2018. arXiv:1705.07452, doi:10.1103/physrevx.8.031016.

4

Fabio Ansaloni, Anasua Chatterjee, Heorhii Bohuslavskyi, Benoit Bertrand, Louis Hutin, Maud Vinet, and Ferdinand Kuemmeth. Single-electron operations in a foundry-fabricated array of quantum dots. Nature Communications, December 2020. URL: https://www.nature.com/articles/s41467-020-20280-3.pdf, doi:10.1038/s41467-020-20280-3.

5

Javier Argüello-Luengo, Alejandro González-Tudela, Tao Shi, Peter Zoller, and J. Ignacio Cirac. Analogue quantum chemistry simulation. Nature, 574(7777):215–218, October 2019. arXiv:1807.09228, doi:10.1038/s41586-019-1614-4.

6

J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, D. Su, J. Swinarton, A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang. Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 591(7848):54–60, March 2021. arXiv:2103.02109, doi:10.1038/s41586-021-03202-1.

7

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510, October 2019. URL: https://www.nature.com/articles/s41586-019-1666-5.pdf, doi:10.1038/s41586-019-1666-5.

8

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, and et al. Hartree-Fock on a superconducting qubit quantum computer. Science, 369(6507):1084–1089, Aug 2020. arXiv:2004.04174, doi:10.1126/science.abb9811.

9

A. Aspect, C. Imbert, and G. Roger. Absolute measurement of an atomic cascade rate using a two photon coincidence technique. Application to the 4p21S0 -4s4p 1P1 -4s21S0 cascade of calcium excited by a two photon absorption. Optics Communications, 34(1):46–52, 1980. doi:10.1016/0030-4018(80)90157-1.

10

Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett., 49:1804–1807, Dec 1982. URL: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.49.1804, doi:10.1103/PhysRevLett.49.1804.

11

Alain Aspect, Philippe Grangier, and Gérard Roger. Experimental tests of realistic local theories via Bell's theorem. Phys. Rev. Lett., 47:460–463, Aug 1981. URL: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.47.460, doi:10.1103/PhysRevLett.47.460.

12

Alain Aspect, Philippe Grangier, and Gérard Roger. Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: a new violation of Bell's inequalities. Phys. Rev. Lett., 49:91–94, Jul 1982. URL: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.49.91, doi:10.1103/PhysRevLett.49.91.

13

Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. Encoding electronic spectra in quantum circuits with linear t complexity. Physical Review X, Oct 2018. URL: https://journals.aps.org/prx/pdf/10.1103/PhysRevX.8.041015, arXiv:1805.03662, doi:10.1103/physrevx.8.041015.

14

Ryan Babbush, Jarrod R. McClean, Michael Newman, Craig Gidney, Sergio Boixo, and Hartmut Neven. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum, 2:010103, Mar 2021. URL: https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.010103, doi:10.1103/PRXQuantum.2.010103.

15

Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio Mezzacapo, and et al. Quantum algorithms for electronic structure calculations: particle-hole hamiltonian and optimized wave-function expansions. Physical Review A, Aug 2018. arXiv:https://arxiv.org/abs/1805.04340, doi:10.1103/physreva.98.022322.

16

Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–1523, Oct 1997. arXiv:quant-ph/9701001, doi:10.1137/s0097539796300933.

17

Jacob Biamonte and Ville Bergholm. Tensor networks in a nutshell. 2017. arXiv:1708.00006.

18

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–202, Sep 2017. arXiv:1611.09347, doi:10.1038/nature23474.

19

Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. Characterizing quantum supremacy in near-term devices. Nature Physics, 14(6):595–600, Apr 2018. arXiv:1608.00263, doi:10.1038/s41567-018-0124-x.

20

Gilles Brassard, Frederic Dupuis, Sebastien Gambs, and Alain Tapp. An optimal quantum algorithm to approximate the mean and its application for approximating the median of a set of points over an arbitrary distance. 2011. arXiv:1106.4267.

21

Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal clifford gates and noisy ancillas. Physical Review A, Feb 2005. arXiv:quant-ph/0403025, doi:10.1103/physreva.71.022316.

22

Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang. Obstacles to variational quantum optimization from symmetry protection. Physical Review Letters, Dec 2020. arXiv:1910.08980, doi:10.1103/physrevlett.125.260505.

23

Jacob C Bridgeman and Christopher T Chubb. Hand-waving and interpretive dance: an introductory course on tensor networks. Journal of Physics A: Mathematical and Theoretical, 50(22):223001, May 2017. URL: https://iopscience.iop.org/article/10.1088/1751-8121/aa6dc3/pdf, arXiv:1603.03039, doi:10.1088/1751-8121/aa6dc3.

24

Guido Burkard, Michael J. Gullans, Xiao Mi, and Jason R. Petta. Superconductor-semiconductor hybrid-circuit quantum electrodynamics. Nature Reviews Physics, 2(3):129–140, January 2020. arXiv:1905.01155, doi:10.1038/s42254-019-0135-2.

25

Davide Castelvecchi. Evidence of elusive majorana particle dies - but computing hope lives on. Nature, 591(7850):354–355, March 2021. URL: https://media.nature.com/original/magazine-assets/d41586-021-00612-z/d41586-021-00612-z.pdf, doi:10.1038/d41586-021-00612-z.

26

J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Physical Review Letters, 74(20):4091–4094, May 1995. doi:10.1103/physrevlett.74.4091.

27

BIG Bell Test Collaboration. Challenging local realism with human choices. Nature, 557(7704):212–216, May 2018. arXiv:1805.04431, doi:10.1038/s41586-018-0085-3.

28

Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta. Validating quantum computers using randomized model circuits. Phys. Rev. A, 100:032328, Sep 2019. arXiv:1811.12926, doi:10.1103/PhysRevA.100.032328.

29

E. J. Crosson and D. A. Lidar. Prospects for quantum enhancement with diabatic quantum annealing. Nature Reviews Physics, 3(7):466–489, may 2021. arXiv:2008.09913, doi:10.1038/s42254-021-00313-6.

30

Alexander M. Dalzell, Aram W. Harrow, Dax Enshan Koh, and Rolando L. La Placa. How many qubits are needed for quantum computational supremacy? Quantum, 4:264, May 2020. arXiv:1805.05224, doi:10.22331/q-2020-05-11-264.

31

Vasil S. Denchev, Sergio Boixo, Sergei V. Isakov, Nan Ding, Ryan Babbush, Vadim Smelyanskiy, John Martinis, and Hartmut Neven. What is the computational value of finite-range tunneling? Physical Review X, aug 2016. arXiv:1512.02206, doi:10.1103/physrevx.6.031015.

32

David P. DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik, 48(9-11):771–783, 2000. arXiv:quant-ph/0002077, doi:https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.

33

J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven. Single-shot read-out of an individual electron spin in a quantum dot. Nature, 430(6998):431–435, Jul 2004. arXiv:cond-mat/0411232, doi:10.1038/nature02693.

34

V. Murg F. Verstraete and J.I. Cirac. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Advances in Physics, 57(2):143–224, 2008. arXiv:0907.2796, doi:10.1080/14789940801912366.

35

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. Nov 2014. arXiv:1411.4028.

36

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum computation by adiabatic evolution. Feb 2000. arXiv:quant-ph/0001106.

37

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Leo Zhou. The quantum approximate optimization algorithm and the sherrington-kirkpatrick model at infinite size. 2021. arXiv:1910.08187.

38

Edward Farhi and Aram W Harrow. Quantum supremacy through the quantum approximate optimization algorithm. Feb 2016. arXiv:1602.07674.

39

Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6-7):467–488, June 1982. doi:10.1007/bf02650179.

40

Frank Gaitan. Finding flows of a navier-stokes fluid through quantum computing. npj Quantum Information, July 2020. URL: https://www.nature.com/articles/s41534-020-00291-0.pdf, doi:10.1038/s41534-020-00291-0.

41

Jay M. Gambetta, Jerry M. Chow, and Matthias Steffen. Building logical qubits in a superconducting quantum computing system. npj Quantum Information, Jan 2017. URL: https://www.nature.com/articles/s41534-016-0004-0.pdf, doi:10.1038/s41534-016-0004-0.

42

R. Ghosh and L. Mandel. Observation of nonclassical effects in the interference of two photons. Phys. Rev. Lett., 59:1903–1905, Oct 1987. doi:10.1103/PhysRevLett.59.1903.

43

Craig Gidney and Martin Ekerå. How to factor 2048 bit rsa integers in 8 hours using 20 million noisy qubits. Quantum, 5:433, Apr 2021. arXiv:1905.09749, doi:10.22331/q-2021-04-15-433.

44

András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. Optimizing quantum optimization algorithms via faster quantum gradient computation. Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1425–1444, Jan 2019. URL: https://epubs.siam.org/doi/pdf/10.1137/1.9781611975482.87, arXiv:1711.00465, doi:10.1137/1.9781611975482.87.

45

Marissa Giustina, Marijn A. M. Versteegh, Sören Wengerowsky, and others. Significant-loophole-free test of bell's theorem with entangled photons. Phys. Rev. Lett., 115:250401, Dec 2015. arXiv:1511.03190, doi:10.1103/PhysRevLett.115.250401.

46

A. W. Glaetzle, R. M. W. van Bijnen, P. Zoller, and W. Lechner. A coherent quantum annealer with rydberg atoms. Nature Communications, jun 2017. URL: https://www.nature.com/articles/ncomms15813.pdf, arXiv:1611.02594, doi:10.1038/ncomms15813.

47

Fred Glover, Gary Kochenberger, and Yu Du. Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models. November 2019. URL: https://www.springerprofessional.de/quantum-bridge-analytics-i-a-tutorial-on-formulating-and-using-q/17436666, arXiv:1811.11538, doi:10.1007/s10288-019-00424-y.

48

Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145, November 1995. URL: https://math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf, doi:10.1145/227683.227684.

49

Alysson Gold, J. P. Paquette, Anna Stockklauser, Matthew J. Reagor, M. Sohaib Alam, Andrew Bestwick, Nicolas Didier, Ani Nersisyan, Feyza Oruc, Armin Razavi, Ben Scharmann, Eyob A. Sete, Biswajit Sur, Davide Venturelli, Cody James Winkleblack, Filip Wudarski, Mike Harburn, and Chad Rigetti. Entanglement across separate silicon dies in a modular superconducting qubit device. npj Quantum Information, September 2021. URL: https://doi.org/10.1038/s41534-021-00484-1, doi:10.1038/s41534-021-00484-1.

50

José Fernando Gonçalves and Mauricio G. C. Resende. Biased random-key genetic algorithms for combinatorial optimization. Journal of Heuristics, 17(5):487–525, October 2011. URL: https://doi.org/10.1007/s10732-010-9143-1, doi:10.1007/s10732-010-9143-1.

51

K. Griffin, Suhas S. Jain, T. Flint, and W. R. Chan. Investigation of quantum algorithms for direct numerical simulation of the navier-stokes equations. 2020. URL: http://web.stanford.edu/~sjsuresh/griffin_2019.pdf.

52

G. G. Guerreschi and A. Y. Matsuura. Qaoa for max-cut requires hundreds of qubits for quantum speed-up. Scientific Reports, May 2019. arXiv:1812.07589, doi:10.1038/s41598-019-43176-9.

53

R. Harris, M. W. Johnson, T. Lanting, A. J. Berkley, J. Johansson, P. Bunyk, E. Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh, F. Cioata, I. Perminov, P. Spear, C. Enderud, C. Rich, S. Uchaikin, M. C. Thom, E. M. Chapple, J. Wang, B. Wilson, M. H. S. Amin, N. Dickson, K. Karimi, B. Macready, C. J. S. Truncik, and G. Rose. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Physical Review B, jul 2010. arXiv:1004.1628, doi:10.1103/physrevb.82.024511.

54

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of equations. Physical Review Letters, Oct 2009. arXiv:0811.3171, doi:10.1103/physrevlett.103.150502.

55

Stuart Harwood, Claudio Gambella, Dimitar Trenev, Andrea Simonetto, David Bernal, and Donny Greenberg. Formulating and solving routing problems on quantum computers. IEEE Transactions on Quantum Engineering, 2():1–17, 2021. URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9314905, arXiv:, doi:10.1109/TQE.2021.3049230.

56

Akel Hashim, Rich Rines, Victory Omole, Ravi K. Naik, John Mark Kreikebaum, David I. Santiago, Frederic T. Chong, Irfan Siddiqi, and Pranav Gokhale. Optimized fermionic swap networks with equivalent circuit averaging for qaoa. 2021. arXiv:2111.04572.

57

M. B. Hastings. Classical and quantum bounded depth approximation algorithms. 2019. arXiv:1905.07047.

58

Matthew B. Hastings and Jeongwan Haah. Dynamically generated logical qubits. Quantum, 5:564, Oct 2021. URL: https://quantum-journal.org/papers/q-2021-10-19-564/pdf/, arXiv:2107.02194, doi:10.22331/q-2021-10-19-564.

59

Matthew B. Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. Improving quantum algorithms for quantum chemistry. Quantum Info. Comput., 15(1–2):1–21, January 2015. URL: https://dl.acm.org/doi/10.5555/2685188.2685189, arXiv:1403.1539, doi:10.5555/2685188.2685189.

60

Cornelius Hempel, Christine Maier, Jhonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben Lanyon, Peter J. Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian Roos. Quantum chemistry calculations on a trapped-ion quantum simulator. Physical Review X, 8:031022, 2018. URL: https://journals.aps.org/prx/pdf/10.1103/PhysRevX.8.031022, arXiv:1803.10238, doi:10.1103/PhysRevX.8.031022.

61

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575):682–686, October 2015. arXiv:1508.05949, doi:10.1038/nature15759.

62

Adam Holmes, Sonika Johri, Gian Giacomo Guerreschi, James S Clarke, and A Y Matsuura. Impact of qubit connectivity on quantum algorithm performance. Quantum Science and Technology, 5(2):025009, March 2020. arXiv:1811.02125, doi:10.1088/2058-9565/ab73e0.

63

C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 59(18):2044–2046, November 1987. doi:10.1103/physrevlett.59.2044.

64

Cupjin Huang, Fang Zhang, Michael Newman, Xiaotong Ni, Dawei Ding, Junjie Cai, Xun Gao, Tenghui Wang, Feng Wu, Gengyan Zhang, Hsiang-Sheng Ku, Zhengxiong Tian, Junyin Wu, Haihong Xu, Huanjun Yu, Bo Yuan, Mario Szegedy, Yaoyun Shi, Hui-Hai Zhao, Chunqing Deng, and Jianxin Chen. Efficient parallelization of tensor network contraction for simulating quantum computation. Nature Computational Science, 1(9):578–587, September 2021. URL: https://www.nature.com/articles/s43588-021-00119-7.pdf, doi:10.1038/s43588-021-00119-7.

65

Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni, Hartmut Neven, Ryan Babbush, Richard Kueng, John Preskill, and Jarrod R. McClean. Quantum advantage in learning from experiments. Science, 376(6598):1182–1186, June 2022. URL: https://ai.googleblog.com/2022/06/quantum-advantage-in-learning-from.html, doi:10.1126/science.abn7293.

66

Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven, and Jarrod R. McClean. Power of data in quantum machine learning. Nature Communications, May 2021. arXiv:2011.01938, doi:10.1038/s41467-021-22539-9.

67

Hirotaka Irie, Goragot Wongpaisarnsin, Masayoshi Terabe, Akira Miki, and Shinichirou Taguchi. Quantum annealing of vehicle routing problem with time, state and capacity. In Quantum Technology and Optimization Problems. QTOP 2019. Lecture Notes in Computer Science, vol 11413., pages 145–156. Springer International Publishing, 2019. arXiv:1903.06322, doi:10.1007/978-3-030-14082-3_13.

68

F. Jelezko and J. Wrachtrup. Single defect centres in diamond: a review. physica status solidi (a), 203(13):3207–3225, October 2006. URL: https://www3.physik.uni-stuttgart.de/TR21/common/show_file.php/publications/193/publication.pdf, doi:10.1002/pssa.200671403.

69

Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–246, Sep 2017. arXiv:1704.05018, doi:10.1038/nature23879.

70

C. L. Kane, P. A. Lee, and N. Read. Motion of a single hole in a quantum antiferromagnet. Phys. Rev. B, 39:6880–6897, Apr 1989. doi:10.1103/PhysRevB.39.6880.

71

B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen. From quantum matter to high-temperature superconductivity in copper oxides. Nature, 518(7538):179–186, February 2015. URL: http://uhp.iphy.ac.cn/article_list/2003_before/2015_Keimer_nature.pdf, doi:10.1038/nature14165.

72

Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge-insensitive qubit design derived from the cooper pair box. Physical Review A, October 2007. arXiv:cond-mat/0703002, doi:10.1103/physreva.76.042319.

73

Paul G. Kwiat, Klaus Mattle, Harald Weinfurter, Anton Zeilinger, Alexander V. Sergienko, and Yanhua Shih. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett., 75:4337–4341, Dec 1995. URL: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.75.4337, doi:10.1103/PhysRevLett.75.4337.

74

Ville Lahtinen and Jiannis Pachos. A short introduction to topological quantum computation. SciPost Physics, September 2017. URL: https://scipost.org/SciPostPhys.3.3.021/pdf, arXiv:1705.04103, doi:10.21468/scipostphys.3.3.021.

75

Ryan LaRose. Overview and Comparison of Gate Level Quantum Software Platforms. Quantum, 3:130, March 2019. arXiv:1807.02500, doi:10.22331/q-2019-03-25-130.

76

Wolfgang Lechner, Philipp Hauke, and Peter Zoller. A quantum annealing architecture with all-to-all connectivity from local interactions. Science Advances, October 2015. URL: https://doi.org/10.1126/sciadv.1500838, doi:10.1126/sciadv.1500838.

77

Yonghae Lee, Jaewoo Joo, and Soojoon Lee. Hybrid quantum linear equation algorithm and its experimental test on ibm quantum experience. Scientific Reports, Mar 2019. URL: https://www.nature.com/articles/s41598-019-41324-9.pdf, arXiv:1807.10651, doi:10.1038/s41598-019-41324-9.

78

Martin Leijnse and Karsten Flensberg. Introduction to topological superconductivity and majorana fermions. Semiconductor Science and Technology, Nov 2012. arXiv:1206.1736, doi:10.1088/0268-1242/27/12/124003.

79

Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran. Quantum embeddings for machine learning. 2020. arXiv:2001.03622.

80

Daniel Loss and David P. DiVincenzo. Quantum computation with quantum dots. Physical Review A, 57(1):120–126, January 1998. URL: https://journals.aps.org/pra/pdf/10.1103/PhysRevA.57.120, doi:10.1103/physreva.57.120.

81

Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by qubitization. Quantum, 3:163, Jul 2019. URL: https://quantum-journal.org/papers/q-2019-07-12-163/pdf/, arXiv:1610.06546, doi:10.22331/q-2019-07-12-163.

82

Michael Lubasch, Jaewoo Joo, Pierre Moinier, Martin Kiffner, and Dieter Jaksch. Variational quantum algorithms for nonlinear problems. Physical Review A, Jan 2020. arXiv:1907.09032, doi:10.1103/physreva.101.010301.

83

Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics, 2014. URL: https://www.frontiersin.org/articles/10.3389/fphy.2014.00005/full, arXiv:1302.5843, doi:10.3389/fphy.2014.00005.

84

Y. Lvovsky and P. Jarvis. Superconducting systems for mri-present solutions and new trends. IEEE Transactions on Applied Superconductivity, 15(2):1317–1325, 2005. doi:10.1109/TASC.2005.849580.

85

He Ma, Marco Govoni, and Giulia Galli. Quantum simulations of materials on near-term quantum computers. npj Computational Materials, July 2020. URL: https://www.nature.com/articles/s41524-020-00353-z.pdf, arXiv:2002.11173, doi:10.1038/s41524-020-00353-z.

86

Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi. Askarani, Fabien Rortais, Trevor Vincent, Jacob F. F. Bulmer, Filippo M. Miatto, Leonhard Neuhaus, Lukas G. Helt, Matthew J. Collins, Adriana E. Lita, Thomas Gerrits, Sae Woo Nam, Varun D. Vaidya, Matteo Menotti, Ish Dhand, Zachary Vernon, Nicolás Quesada, and Jonathan Lavoie. Quantum computational advantage with a programmable photonic processor. Nature, 606(7912):75–81, June 2022. URL: https://www.nature.com/articles/s41586-022-04725-x.pdf, doi:10.1038/s41586-022-04725-x.

87

S. Mangini, F. Tacchino, D. Gerace, D. Bajoni, and C. Macchiavello. Quantum computing models for artificial neural networks. Europhysics Letters, 134(1):10002, April 2021. URL: https://iopscience.iop.org/article/10.1209/0295-5075/134/10002/pdf, arXiv:2102.03879, doi:10.1209/0295-5075/134/10002.

88

Igor L. Markov and Yaoyun Shi. Simulating quantum computation by contracting tensor networks. SIAM Journal on Computing, 38(3):963–981, January 2008. arXiv:quant-ph/0511069, doi:10.1137/050644756.

89

Kunal Marwaha and Stuart Hadfield. Bounds on approximating max $k$xor with quantum and classical local algorithms. 2021. arXiv:2109.10833.

90

Jarrod R. McClean, Nicholas C. Rubin, Joonho Lee, Matthew P. Harrigan, Thomas E. O'Brien, Ryan Babbush, William J. Huggins, and Hsin-Yuan Huang. What the foundations of quantum computer science teach us about chemistry. The Journal of Chemical Physics, 155(15):150901, October 2021. URL: https://aip.scitation.org/doi/pdf/10.1063/5.0060367, arXiv:2106.03997, doi:10.1063/5.0060367.

91

Jarrod Ryan McClean, Matthew P Harrigan, Masoud Mohseni, Nicholas Rubin, Zhang Jiang, Sergio Boixo, Vadim Smelyanskiy, Ryan Babbush, and Hartmut Neven. Low-depth mechanisms for quantum optimization. PRX Quantum, July 2021. URL: https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.030312, arXiv:2008.08615, doi:10.1103/PRXQuantum.2.030312.

92

Nicolas C. Menicucci, Peter van Loock, Mile Gu, Christian Weedbrook, Timothy C. Ralph, and Michael A. Nielsen. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett., 97:110501, Sep 2006. arXiv:quant-ph/0605198, doi:10.1103/PhysRevLett.97.110501.

93

Xiao Mi, Pedram Roushan, Chris Quintana, Salvatore Mandrà , Jeffrey Marshall, Charles Neill, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, Joseph C. Bardin, Rami Barends, Joao Basso, Andreas Bengtsson, Sergio Boixo, Alexandre Bourassa, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Zijun Chen, Benjamin Chiaro, Roberto Collins, William Courtney, Sean Demura, Alan R. Derk, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Edward Farhi, Austin G. Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Jonathan A. Gross, Matthew P. Harrigan, Sean D. Harrington, Jeremy Hilton, Alan Ho, Sabrina Hong, Trent Huang, William J. Huggins, L. B. Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Julian Kelly, Seon Kim, Alexei Kitaev, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Erik Lucero, Orion Martin, Jarrod R. McClean, Trevor McCourt, Matt McEwen, Anthony Megrant, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Michael Newman, Murphy Yuezhen Niu, Thomas E. O'Brien, Alex Opremcak, Eric Ostby, Balint Pato, Andre Petukhov, Nicholas Redd, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vladimir Shvarts, Doug Strain, Marco Szalay, Matthew D. Trevithick, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, Igor Aleiner, Kostyantyn Kechedzhi, Vadim Smelyanskiy, and Yu Chen. Information scrambling in quantum circuits. Science, 374(6574):1479–1483, dec 2021. URL: https://research.google/pubs/pub50297, arXiv:2101.08870, doi:10.1126/science.abg5029.

94

Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Information, January 2016. URL: https://www.nature.com/articles/npjqi201523.pdf, arXiv:1511.04206, doi:10.1038/npjqi.2015.23.

95

Gary J. Mooney, Charles D. Hill, and Lloyd C. L. Hollenberg. Entanglement in a 20-qubit superconducting quantum computer. Scientific Reports, September 2019. URL: https://www.nature.com/articles/s41598-019-49805-7.pdf, arXiv:1903.11747, doi:10.1038/s41598-019-49805-7.

96

Annie Naveh, Imogen Fitzgerald, Anna Phan, Andrew Lockwood, and Travis L. Scholten. Kernel matrix completion for offline quantum-enhanced machine learning. 2021. arXiv:2112.08449.

97

Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-abelian anyons and topological quantum computation. Reviews of Modern Physics, 80(3):1083–1159, Sep 2008. arXiv:0707.1889, doi:10.1103/revmodphys.80.1083.

98

Sergey Novikov, Robert Hinkey, Steven Disseler, James I Basham, Tameem Albash, Andrew Risinger, David Ferguson, Daniel A. Lidar, and Kenneth M. Zick. Exploring more-coherent quantum annealing. In 2018 IEEE International Conference on Rebooting Computing (ICRC). IEEE, nov 2018. arXiv:1809.04485, doi:10.1109/icrc.2018.8638625.

99

P. J. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simulation of molecular energies. Phys. Rev. X, 6:031007, Jul 2016. URL: https://journals.aps.org/prx/pdf/10.1103/PhysRevX.6.031007, arXiv:1512.06860, doi:10.1103/PhysRevX.6.031007.

100

Jonathan Olson, Yudong Cao, Jonathan Romero, Peter Johnson, Pierre-Luc Dallaire-Demers, Nicolas Sawaya, Prineha Narang, Ian Kivlichan, Michael Wasielewski, and Alán Aspuru-Guzik. Quantum information and computation for chemistry. 2017. arXiv:1706.05413.

101

Román Orús. A practical introduction to tensor networks: matrix product states and projected entangled pair states. Annals of Physics, 349:117–158, 2014. arXiv:1306.2164, doi:https://doi.org/10.1016/j.aop.2014.06.013.

102

Thomas E. O’Brien, Bruno Senjean, Ramiro Sagastizabal, Xavier Bonet-Monroig, Alicja Dutkiewicz, Francesco Buda, Leonardo DiCarlo, and Lucas Visscher. Calculating energy derivatives for quantum chemistry on a quantum computer. npj Quantum Information, Dec 2019. URL: https://www.nature.com/articles/s41534-019-0213-4.pdf, doi:10.1038/s41534-019-0213-4.

103

Alejandro Perdomo-Ortiz, Alexander Feldman, Asier Ozaeta, Sergei V. Isakov, Zheng Zhu, Bryan O’Gorman, Helmut G. Katzgraber, Alexander Diedrich, Hartmut Neven, Johan de Kleer, and et al. Readiness of quantum optimization machines for industrial applications. Physical Review Applied, Jul 2019. arXiv:1708.09780, doi:10.1103/physrevapplied.12.014004.

104

Evan Peters, João Caldeira, Alan Ho, Stefan Leichenauer, Masoud Mohseni, Hartmut Neven, Panagiotis Spentzouris, Doug Strain, and Gabriel N. Perdue. Machine learning of high dimensional data on a noisy quantum processor. 2021. arXiv:2101.09581.

105

L. Petit, H. G. J. Eenink, M. Russ, W. I. L. Lawrie, N. W. Hendrickx, S. G. J. Philips, J. S. Clarke, L. M. K. Vandersypen, and M. Veldhorst. Universal quantum logic in hot silicon qubits. Nature, 580(7803):355–359, April 2020. URL: https://www.researchgate.net/publication/336510543_Universal_quantum_logic_in_hot_silicon_qubits, doi:10.1038/s41586-020-2170-7.

106

Olivier Pfister. Continuous-variable quantum computing in the quantum optical frequency comb. Journal of Physics B: Atomic, Molecular and Optical Physics, 53(1):012001, nov 2019. URL: https://iopscience.iop.org/article/10.1088/1361-6455/ab526f/pdf, arXiv:1907.09832, doi:10.1088/1361-6455/ab526f.

107

Benedikt Poggel, Nils Quetschlich, Lukas Burgholzer, Robert Wille, and Jeanette Miriam Lorenz. Recommending solution paths for solving optimization problems with quantum computing. 2022. arXiv:2212.11127.

108

John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August 2018. arXiv:1801.00862v3, doi:10.22331/q-2018-08-06-79.

109

Gregory Quiroz, Paraj Titum, Phillip Lotshaw, Pavel Lougovski, Kevin Schultz, Eugene Dumitrescu, and Itay Hen. Quantifying the impact of precision errors on quantum approximate optimization algorithms. 2021. arXiv:2109.04482.

110

Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Phys. Rev. Lett., 86:5188–5191, May 2001. arXiv:quant-ph/0108118, doi:10.1103/PhysRevLett.86.5188.

111

Navamita Ray, Tirtha Banerjee, Balasubramanya Nadiga, and Satish Karra. Towards solving the navier-stokes equation on quantum computers. 2019. arXiv:1904.09033.

112

Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences, 114(29):7555–7560, July 2017. URL: https://www.pnas.org/content/pnas/114/29/7555.full.pdf, arXiv:1605.03590, doi:10.1073/pnas.1619152114.

113

Chad Rigetti and Michel Devoret. Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies. Physical Review B, April 2010. URL: https://cpb-us-w2.wpmucdn.com/campuspress.yale.edu/dist/2/3627/files/2020/11/Rigetti_Devoret_-_Fully_Microwave-Tunable_Universal_Gates_in_Superconducting_Qubits_with_Linear_Couplings_and_Fixed_Transition_Frequencies.pdf, doi:10.1103/physrevb.81.134507.

114

Terry Rudolph. Why i am optimistic about the silicon-photonic route to quantum computing. APL Photonics, 2(3):030901, March 2017. URL: https://aip.scitation.org/doi/pdf/10.1063/1.4976737, doi:10.1063/1.4976737.

115

S. Sammak, A. G. Nouri, N. Ansari, and P. Givi. Quantum computing and its potential for turbulence simulations. In Nargozy Danaev, Yurii Shokin, and Akhmed-Zaki Darkhan, editors, Mathematical Modeling of Technological Processes, 124–132. Springer International Publishing, 2015. URL: http://dx.doi.org/10.13140/RG.2.1.2273.6089, doi:10.1007/978-3-319-25058-8_13.

116

Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326(1):96–192, January 2011. arXiv:1008.3477, doi:10.1016/j.aop.2010.09.012.

117

Martin J.A. Schuetz, J. Kyle Brubaker, Henry Montagu, Yannick van Dijk, Johannes Klepsch, Philipp Ross, Andre Luckow, Mauricio G.C. Resende, and Helmut G. Katzgraber. Optimization of robot-trajectory planning with nature-inspired and hybrid quantum algorithms. Physical Review Applied, November 2022. arXiv:2206.03651, doi:10.1103/physrevapplied.18.054045.

118

Maria Schuld and Nathan Killoran. Is quantum advantage the right goal for quantum machine learning? 2022. arXiv:2203.01340.

119

Philipp Seitz, Ismael Medina, Esther Cruz, Qunsheng Huang, and Christian B. Mendl. Simulating quantum circuits using tree tensor networks. Quantum, 7:964, March 2023. URL: https://quantum-journal.org/papers/q-2023-03-30-964/pdf/, arXiv:2206.01000, doi:10.22331/q-2023-03-30-964.

120

Lynden K. Shalm, Evan Meyer-Scott, Bradley G. Christensen, and others. Strong loophole-free test of local realism. Phys. Rev. Lett., 115:250402, Dec 2015. URL: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.115.250402, doi:10.1103/PhysRevLett.115.250402.

121

Rene Steijl. Quantum algorithms for nonlinear equations in fluid mechanics. In Quantum Computing and Communications [Working Title]. IntechOpen, December 2020. doi:10.5772/intechopen.95023.

122

René Steijl. Quantum algorithms for fluid simulations. In Advances in Quantum Communication and Information. IntechOpen, February 2020. doi:10.5772/intechopen.86685.

123

Ruslan N. Tazhigulov, Shi-Ning Sun, Reza Haghshenas, Huanchen Zhai, Adrian T.K. Tan, Nicholas C. Rubin, Ryan Babbush, Austin J. Minnich, and Garnet Kin-Lic Chan. Simulating models of challenging correlated molecules and materials on the sycamore quantum processor. PRX Quantum, 3:040318, Nov 2022. URL: https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.3.040318, arXiv:2203.15291, doi:10.1103/PRXQuantum.3.040318.

124

Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 119:180509, Nov 2017. URL:, arXiv:1612.02058, doi:10.1103/PhysRevLett.119.180509.

125

S. Vaitiekėnas, G. W. Winkler, B. van Heck, T. Karzig, M.-T. Deng, K. Flensberg, L. I. Glazman, C. Nayak, P. Krogstrup, R. M. Lutchyn, and et al. Flux-induced topological superconductivity in full-shell nanowires. Science, 367(6485):eaav3392, Mar 2020. URL: https://science.sciencemag.org/content/367/6485/eaav3392.full.pdf, arXiv:2003.13177, doi:10.1126/science.aav3392.

126

Lieven Vandenberghe and Martin S. Andersen. Chordal graphs and semidefinite optimization. Foundations and Trends® in Optimization, 1(4):241–433, 2015. URL: https://www.seas.ucla.edu/~vandenbe/publications/chordalsdp.pdf, doi:10.1561/2400000006.

127

L. M. K. Vandersypen, J. M. Elzerman, R. N. Schouten, L. H. Willems van Beveren, R. Hanson, and L. P. Kouwenhoven. Real-time detection of single-electron tunneling using a quantum point contact. Applied Physics Letters, 85(19):4394, 2004. arXiv:cond-mat/0407121, doi:10.1063/1.1815041.

128

Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations. Physical Review Letters, October 2003. arXiv:quant-ph/0301063, doi:10.1103/physrevlett.91.147902.

129

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret. Manipulating the quantum state of an electrical circuit. Science, 296(5569):886–889, May 2002. arXiv:cond-mat/0205343, doi:10.1126/science.1069372.

130

Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J. Coles. Noise-induced barren plateaus in variational quantum algorithms. Nature Communications, Nov 2021. URL: http://dx.doi.org/10.1038/s41467-021-27045-6, doi:10.1038/s41467-021-27045-6.

131

Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer. Gate-count estimates for performing quantum chemistry on small quantum computers. Physical Review A, Aug 2014. URL: http://dx.doi.org/10.1103/PhysRevA.90.022305, arXiv:1312.1695, doi:10.1103/physreva.90.022305.

132

Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger. Violation of bell's inequality under strict einstein locality conditions. Phys. Rev. Lett., 81:5039–5043, Dec 1998. arXiv:quant-ph/9810080, doi:10.1103/PhysRevLett.81.5039.

133

Sean J. Weinberg, Fabio Sanches, Takanori Ide, Kazumitzu Kamiya, and Randall Correll. Supply chain logistics with quantum and classical annealing algorithms. arXiv, 2022. arXiv:2205.04435.

134

James D. Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simulation of electronic structure hamiltonians using quantum computers. Molecular Physics, 109(5):735–750, Mar 2011. arXiv:1001.3855, doi:10.1080/00268976.2011.552441.

135

Frank Wilczek. Majorana returns. Nature Physics, 5(9):614–618, September 2009. URL: https://www.nikhef.nl/~h02/wilczek_majorana.pdf, doi:10.1038/nphys1380.

136

Christopher J. Wood, Jacob D. Biamonte, and David G. Cory. Tensor networks and graphical calculus for open quantum systems. Quantum Information and Computation, 15(9&10):759–811, July 2015. URL: https://www.rintonpress.com/xxqic15/qic-15-910/0759-0811.pdf, arXiv:1111.6950, doi:10.26421/qic15.9-10-3.

137

Guanglei Xu, Andrew J. Daley, Peyman Givi, and Rolando D. Somma. Turbulent mixing simulation via a quantum algorithm. AIAA Journal, 56(2):687–699, February 2018. doi:10.2514/1.j055896.

138

Guanglei Xu, Andrew J. Daley, Peyman Givi, and Rolando D. Somma. Quantum algorithm for the computation of the reactant conversion rate in homogeneous turbulence. Combustion Theory and Modelling, 23(6):1090–1104, 2019. URL: https://core.ac.uk/download/pdf/226757452.pdf, doi:10.1080/13647830.2019.1626025.

139

Sheir Yarkoni, Elena Raponi, Thomas Bäck, and Sebastian Schmitt. Quantum annealing for industry applications: introduction and review. Reports on Progress in Physics, 85(10):104001, September 2022. URL: https://doi.org/10.1088/1361-6633/ac8c54, doi:10.1088/1361-6633/ac8c54.

140

Hao Zhang, Chun-Xiao Liu, Sasa Gazibegovic, Di Xu, John A. Logan, Guanzhong Wang, Nick van Loo, Jouri D. S. Bommer, Michiel W. A. de Moor, Diana Car, Roy L. M. Op het Veld, Petrus J. van Veldhoven, Sebastian Koelling, Marcel A. Verheijen, Mihir Pendharkar, Daniel J. Pennachio, Borzoyeh Shojaei, Joon Sue Lee, Chris J. Palmstrøm, Erik P. A. M. Bakkers, S. Das Sarma, and Leo P. Kouwenhoven. RETRACTED ARTICLE: quantized majorana conductance. Nature, 556(7699):74–79, March 2018. arXiv:1710.10701, doi:10.1038/nature26142.

141

Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X, 10:021067, Jun 2020. URL: https://journals.aps.org/prx/pdf/10.1103/PhysRevX.10.021067, arXiv:1812.01041, doi:10.1103/PhysRevX.10.021067.

Miscellaneous

Magazines, speeches, courses etc.

M1

Stina Andersson, Abraham Asfaw, Antonio Corcoles, Luciano Bello, Yael Ben-Haim, Mehdi Bozzo-Rey, Sergey Bravyi, Nicholas Bronn, Lauren Capelluto, Almudena Carrera Vazquez, Jack Ceroni, Richard Chen, Albert Frisch, Jay Gambetta, Shelly Garion, Leron Gil, Salvador De La Puente Gonzalez, Francis Harkins, Takashi Imamichi, Hwajung Kang, Amir h. Karamlou, Robert Loredo, David McKay, Antonio Mezzacapo, Zlatko Minev, Ramis Movassagh, Giacomo Nannicini, Paul Nation, Anna Phan, Marco Pistoia, Arthur Rattew, Joachim Schaefer, Javad Shabani, John Smolin, John Stenger, Kristan Temme, Madeleine Tod, Ellinor Wanzambi, Stephen Wood, and James Wootton. Learn quantum computation using qiskit. 2020. URL: http://community.qiskit.org/textbook (visited on 2021-12-30).

M2

Abe Asfaw, Thomas Alexander, Paul Nation, and Jay Gambetta. Get to the heart of real quantum hardware. IBM Research Blog, Dec 2019. URL: https://www.ibm.com/blogs/research/2019/12/qiskit-openpulse/ (visited on 2021-06-27).

M3

Alain Aspect. Closing the door on Einstein and Bohr’s quantum debate. Physics, 2015. URL: https://physics.aps.org/articles/v8/123.

M4

Ryan Bennink. Meaningful quantification of the expressiveness of variational quantum circuits. IEEE QCE21 - Workshop 11 on "Quantum Artificial Intelligence", Oct 2021. URL: https://qce.quantum.ieee.org.

M5

Ryan Bennink. Stabilizer-based methods for simulating near-clifford circuits. IEEE QCE21 - Workshop 1 on "Advanced Simulations of Quantum Computations", Oct 2021. URL: https://qce.quantum.ieee.org.

M6

Tom Brant. Quantum computing: a bubble ready to burst? PC Mag UK, 2020. URL: https://uk.pcmag.com/news/129895/quantum-computing-a-bubble-ready-to-burst (visited on 2021-06-05).

M7

James Clarke. Towards a large-scale quantum computer using silicon spin qubits. "Hot Chips 32" Conference Archive, Aug 2020. URL: https://hotchips.org/archives/hc32/.

M8

James Clarke. From a grain of sand to a quantum computer. IEEE QCE21 - Keynote Presentation, Oct 2021. URL: https://qce.quantum.ieee.org.

M9

Graham Collins. Computing with quantum knots. Scientific American, 294:56–63, 05 2006. URL: https://www.cs.virginia.edu/~robins/Computing_with_Quantum_Knots.pdf, doi:10.1038/scientificamerican0406-56.

M10

D-Wave. D-Wave Ocean Software Documentation. 2021. URL: https://docs.ocean.dwavesys.com/en/stable/index.html (visited on 2021-11-01).

M11

D-Wave. D-Wave System Documentation. 2021. URL: https://docs.dwavesys.com/docs/latest/index.html (visited on 2021-11-01).

M12

Sankar Das Sarma. Quantum computing has a hype problem. MIT Technology Review, 2022. URL: https://www.technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem (visited on 2022-03-29).

M13

Joseph Emerson. Turbocharging quantum computing with active & passive error suppression. IEEE QCE21 - Workshop 12 on "Engineering Challenges in Scaling from NISQ to Universal Fault-Tolerant Quantum Computers", Oct 2021. URL: https://qce.quantum.ieee.org.

M14

Class for Physics of the Royal Swedish Academy of Sciences. Topological phase transitions and topological phases of matter. Scientific Background on the Nobel Prize in Physics 2016, 2016. URL: https://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2016-1.pdf.

M15

Jay Gambetta. Challenges and directions of quantum computing with superconducting qubits. IEEE QCE21 - Keynote Presentation, Oct 2021. URL: https://qce.quantum.ieee.org.

M16

Pranav Gokhale. Recent results in quantum approximate optimization. IEEE QCE21 - Workshop 11 on "Quantum Artificial Intelligence", Oct 2021. URL: https://qce.quantum.ieee.org.

M17

John Horgan. Will quantum computing ever live up to its hype? Scientific American, 2021. URL: https://www.scientificamerican.com/article/will-quantum-computing-ever-live-up-to-its-hype (visited on 2021-06-05).

M18

Christian Jirauschek. Zentrum für QuantenEngineering (ZQE) Garching. Jul 2019. URL: https://wiki.tum.de/download/attachments/251625503/IndustryDay_Jirauschek.pdf.

M19

Stephen Jordan. Quantum algorithm zoo. 2021. URL: https://quantumalgorithmzoo.org/ (visited on 2021-10-23).

M20

Daniel A. Lidar. Achievements of the iarpa-qeo and darpa-qafs programs, and the prospects for quantum enhancement with quantum annealing. AQC 2021 - Special session on (inter)national projects for quantum annealing, June 2021. URL: https://aqc2021.org/oral_slides/2-7_DanielLidar.pdf.

M21

Seth Lloyd. The co-evolution of classical and quantum ai. IEEE QCE21 - Workshop 11 on "Quantum Artificial Intelligence", Oct 2021. URL: https://qce.quantum.ieee.org.

M22

Roman Malina and Stefan Woerner. Exploring quantum computing use cases for manufacturing. IBM Institute for Business Value, june 2019. URL: https://www.ibm.com/downloads/cas/LJBOKBLW (visited on 2022-01-04).

M23

Kunal Marwaha. The living qaoa reference. blog, 2021. URL: https://marwahaha.github.io/qaoa-reference/ (visited on 2022-01-06).

M24

Anne Matsuura. Coupling quantum systems and hpc systems at scale. IEEE QCE21 - Workshop 13 on "Integrating High-Performance Computing with Quantum Computing", Oct 2021. URL: https://qce.quantum.ieee.org.

M25

Andy Matuschak and Michael A. Nielsen. How does the quantum search algorithm work? 2019. URL: https://quantum.country/search.

M26

Carola Meyer. Quantum computing with semiconductor quantum dots. In S. Blügel, M. Morgenstern, D. Bürgler, C. M. Schneider, and R. Waser, editors, Spintronics - from GMR to quantum information: lecture notes of the 40th spring school 2009, chapter X5. Forschungszentrum Jülich Zentralbibliothek, Jülich, 2009. URL: https://www.fz-juelich.de/SharedDocs/Downloads/PGI/PGI-6/EN/meyer_004.pdf, doi:2128/3592.

M27

Microsoft. Azure Quantum Documentation: Introduction to the Quantum Chemistry Library. 2021. URL: https://docs.microsoft.com/en-us/azure/quantum/user-guide/libraries/chemistry/ (visited on 2021-10-23).

M28

Abby Mitchell. Explore the clifford group, a crucial tool for benchmarking, error correction, and more. Medium Qiskit Blog, Aug 2021. URL: https://medium.com/qiskit/explore-the-clifford-group-a-crucial-tool-for-benchmarking-error-correction-and-more-b9fdca16bb46 (visited on 2021-10-22).

M29

Bishnu Patra, Jeroen P. G. van Dijk, Sushil Subramanian, Andrea Corna, Xiao Xue, Charles Jeon, Farhana Sheikh, Esdras Juarez-Hernandez, Brando Perez Esparza, Huzaifa Rampurawala, Brent Carlton, Nodar Samkharadze, Surej Ravikumar, Carlos Nieva, Sungwon Kim, Hyung-Jin Lee, Amir Sammak, Giordano Scappucci, Menno Veldhorst, Lieven M. K. Vandersypen, Masoud Babaie, Fabio Sebastiano, Edoardo Charbon, and Stefano Pellerano. 19.1 a scalable cryo-cmos 2-to-20ghz digitally intensive controller for 4×32 frequency multiplexed spin qubits/transmons in 22nm finfet technology for quantum computers. In 2020 IEEE International Solid- State Circuits Conference - (ISSCC), volume, 304–306. 2020. URL: http://pure.tudelft.nl/ws/files/72801887/09063109.pdf, doi:10.1109/ISSCC19947.2020.9063109.

M30

Gabriel Perdue. Supernova classification using kernel methods on the google sycamore quantum processor. IEEE QCE21 - Workshop 11 on "Quantum Artificial Intelligence", Oct 2021. URL: https://qce.quantum.ieee.org.

M31

Olivier Pfister. Photonic quantum computing. IEEE QCE21 - Tutorial 16, Oct 2021. URL: https://qce.quantum.ieee.org.

M32

Daniel Ratke. Xa0 blog. blog, Oct 2020. URL: https://blog.xa0.de/ (visited on 2021-11-01).

M33

Matt Reagor. Quantum computers from superconducting qubits. IEEE QCE21 - Workshop 12 on "Engineering Challenges in Scaling from NISQ to Universal Fault-Tolerant Quantum Computers", Oct 2021. URL: https://qce.quantum.ieee.org.

M34

John Russell. Intel connects the (quantum) dots in accelerating quantum computing effort. HPC wire, 2020. URL: https://www.hpcwire.com/2020/08/19/intel-connects-the-quantum-dots-in-accelerating-quantum-computing-effort/ (visited on 2021-04-03).

M35

Travis Scholten. Kernel matrix completion for offline quantum-enhanced machine learning. IEEE QCE21 - Workshop 11 on "Quantum Artificial Intelligence", Oct 2021. URL: https://qce.quantum.ieee.org.

M36

Stephen Shankland. Quantum computing will change our lives. but be patient, please. CNET, 2022. URL: https://www.cnet.com/tech/computing/quantum-computing-will-change-our-lives-but-be-patient-please/ (visited on 2022-12-21).

M37

Ruslan Shaydulin. Combinatorial Optimization on Quantum Computers (IEEE Quantum Week tutorial). github and youtube, Oct 2020. URL: https://github.com/rsln-s/IEEE_QW_2020.

M38

Henrique Silverio. Pulse-level programming of neutral-atom devices with pulser - session 1. IEEE QCE21 - Tutorial 9, Oct 2021. URL: https://qce.quantum.ieee.org.

M39

IBM Quantum team. Introduction to Quantum Computing and Quantum Hardware. 2020. URL: http://qiskit.org/learn/intro-qc-qh.

M40

Dimitar Trenev. Beyond maxcut: experiences with quantum optimization algorithms applied to routing problems. IEEE QCE21 - Workshop 17 on "Developing the Quantum Approximate Optimization Algorithm", Oct 2021. URL: https://qce.quantum.ieee.org.

M41

The Group Properties Wiki. Linear representation theory of symmetric group s3. 2014. URL: https://groupprops.subwiki.org/wiki/Linear_representation_theory_of_symmetric_group:S3 (visited on 2021-10-23).

M42

Frank K. Wilhelm, Rainer Steinwandt, Brandon Langenberg, Per J. Liebermann, Anette Messinger, Peter K. Schuhmacher, and Aditi Misra-Spieldenner. Status of quantum computer development. Federal Office for Information Security, Germany, Jun 2020. URL: https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Kryptografie/Quantencomputing/entwicklungsstand-quantencomputer_node.html (visited on 2021-06-30).

Textbooks

A selection of reference textbooks about various topics.

T1

William Cook, William J. Cook, rnhard Korte, William H. Cunningham, William R. Pulleyblank, and Alexander Schrijver. Combinatorial Optimization -. Wiley, New York, edition, 1997. ISBN 978-0-471-55894-1.

T2

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms -. MIT Press, Cambridge, third edition edition, 2009. ISBN 978-0-262-03384-8.

T3

Richard P. Feynman, Robert B. Leighton, and Matthew Sands. The Feynman Lectures on Physics: Quantum Mechanics. California Institute of Technology, Michael A. Gottlieb, and Rudolf Pfeiffer, the New Millennium Edition edition, 2013. URL: https://www.feynmanlectures.caltech.edu.

T4

Morton Hamermesh. Group Theory and Its Application to Physical Problems -. Courier Corporation, New York, edition, 2012. ISBN 978-0-486-14039-1.

T5

Rodney Loudon. The Quantum Theory of Light -. OUP Oxford, New York, London, third edition edition, 2000. ISBN 978-0-198-50176-3.

T6

Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry - Introduction to Advanced Electronic Structure Theory -. Courier Corporation, New York, edition, 1996. ISBN 978-0-486-69186-2. URL: https://chemistlibrary.files.wordpress.com/2015/02/modern-quantum-chemistry.pdf.

T7

Vijay V. Vazirani. Approximation Algorithms -. Springer Science & Business Media, Berlin Heidelberg, edition, 2002. ISBN 978-3-540-65367-7.

T8

David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms -. Cambridge University Press, Cambridge, edition, 2011. ISBN 978-0-521-19527-0. URL: https://www.designofapproxalgs.com/book.pdf.