Pauli Operators

\[% https://latex.wikia.org/wiki/List_of_LaTeX_symbols % https://www.overleaf.com/learn/latex/Main_Page % % latex commands for quantum mechanics: bra & kets \newcommand{\bra}[1]{\left<#1\right|} \newcommand{\ket}[1]{\left|#1\right>} \newcommand{\bk}[2]{\left<#1\middle|#2\right>} \newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>} % % general shortcuts \newcommand{\bm}[1]{\boldsymbol{#1}} % bold math \newcommand{\super}[2]{#1 {}^{#2}} % superscript \newcommand{\half}{\frac{1}{2}} % % hats together with subscripts or superscript (e.g. for angular momentum) \newcommand{\hatb}[1]{\bm{\hat{#1}}} % hat + bold \newcommand{\hatsub}[2]{\hat{{#1}_{#2}}} % hat + subscript \newcommand{\hatsup}[2]{\super{\hat{#1}}{#2}} % hat + superscript \newcommand{\hatsubsup}[3]{\super{\hat{#1}}{#3}_{#2}} % hat + sub + superscript % % Pauli operators \newcommand{\pauliX}{\hatsubsup{\sigma}{X}{}} \newcommand{\pauliY}{\hatsubsup{\sigma}{Y}{}} \newcommand{\pauliZ}{\hatsubsup{\sigma}{Z}{}} \newcommand{\pauliP}{\hatsubsup{\sigma}{+}{}} \newcommand{\pauliM}{\hatsubsup{\sigma}{-}{}} \newcommand{\pauliPM}{\hatsubsup{\sigma}{\pm}{}} % % derivates \newcommand{\odv}[2]{\frac{\textrm{d} #1}{\textrm{d} #2}} \newcommand{\pdv}[2]{\frac{\partial #1}{\partial #2}}\]

Definitions

In Angular Momentum we defined angular-momentum observables \(\hatb J\) by their commutation relations:

\[\hatb{J} \times \hatb{J} = i \hbar \hatb{J}\]

In order to interpret the outcomes of experiments related to the spin of particles, three operators, denoted by \(\hat \sigma_i\), were formulated, that:

  • act in a 2-dimensional Hilbert space i.e. describe a two-level quantum system ;

  • obey a commutation relations very similar to the above mentioned ;

  • have eigenvalues \(\pm 1\).

These operators called Pauli operators are defined as

\[\begin{split}\hat \sigma_X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \, ; \quad \hat \sigma_Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \, ; \quad \hat \sigma_Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\end{split}\]

and they obey the commutation relation

\[\hatb{\sigma} \times \hatb{\sigma} = 2 i \hatb{\sigma}\]

Together with the identity operator \(\hat I\), they form a basis of the space of operators acting in a 2-dimensional Hilbert space \(\mathcal H\), i.e. any operator of \(\mathcal H\) can be expressed as linear combination of \(\hat I\) and the \(\hat \sigma_i\).

An operator \(\hat a\), that is defined as a linear combination of the \(\hat \sigma_i\), can be written using a vector \(\bm n\):

\[\begin{split}\hat a & = \bm{n} \cdot \hatb{\sigma} \\ & = n_X \hat \sigma_X + n_Y \hat \sigma_Y + n_Z \hat \sigma_Z\end{split}\]

The action of an operator \(\exp(-i \theta \, \bm{n} \cdot \hatb{\sigma})\) on any state vector can be described in the Bloch sphere as a rotation of this vector around the axis defined by \(\bm n\).

References

  • [B2], section 2.1.1